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Chebyshev super spectral viscosity solution of
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SUMMARY

The numerical solution of a model describing a two-dimensional �uidized bed by a Chebyshev super
spectral viscosity (SSV) method is considered. The model is in the form of a hyperbolic system of con-
servation laws with a source term, coupled with an elliptic equation for determining a stream function.
The coupled elliptic equation is solved by a �nite-di�erence method. The mixed SSV/�nite-di�erence
method produces physically shaped bubbles, on a very coarse grid. Fine scale details, which were not
present in previous �nite-di�erence solutions, are present in the solution. Copyright ? 2003 John Wiley
& Sons, Ltd.
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1. INTRODUCTION

Fluidized beds are used in the chemical and fossil fuel processing industries to mix particulate
solids and �uids (gases or liquids). A typical �uidized bed consists of a vertically oriented
chamber, a bed of particulate solids, and a �uid �ow distributor at the bottom of the chamber.
The �uid �ows upward through the particles creating a force that counteracts gravity at
which time a state of minimum �uidization is reached. Stronger gas in�ows (more than
is necessary to maintain minimum �uidization) lead to pockets of gas, or equivalently low
particle concentrations, resembling bubbles in a liquid travelling upward through the particles.
Each rising bubble pushes a large amount of mass in front of it. Particles move downward
through and around the rising bubble until it reaches the top of the bed. A settled bed is
reestablished, and the cycle repeats. Each set of upward moving particles is referred to as a
slug.
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In this paper, a two-dimensional �uidized-bed model in the form of a hyperbolic system of
conservation laws with a source term (1), coupled with an elliptic equation (2) for determining
a stream function, is solved numerically.

wt + f(w)x + g(w)z = b(w;  x;  z) (1)

−( xx +  zz) + p(x; z) x + q(x; z) z = r(x; z) (2)

The origins of the model can be found in [1] where a general set of equations modelling
dispersed two-phase �ow is derived. In Reference [2] a stream function is introduced into
the model which corresponds to the total volumetric �ux. In the paper [3], the authors state
the model for the case of heavy particles dispersed in a gas and with the gas inertia being
neglected. It is in this form that we consider the model. A distinguishing feature of the model
is that it neglects particle viscosity. Mathematical models of �uidized beds may or may not
include a particle viscosity term in an attempt to model the property of the �uidized particles
that resists the force tending to cause them to �ow. It has been speculated by some authors
[4] that particle viscosity, no matter how small, is essential for the behaviour corresponding
to slugging to occur. However, it has been demonstrated numerically for a one-dimensional
model [5–7] and for the considered two-dimensional model [3, 8], that a model without particle
viscosity is capable of reproducing oscillatory slugging behaviour.
Much of the early numerical work with �uidized-bed models produced results, particularly

bubble shape, which did not agree with experimental observations (see Reference [9] and
references within). Often, the models which were used included particle viscosity. Recently,
the particle viscosity free model, was solved numerically by a second-order Godunov method
which produced a numerical solution which included the physically observed kidney-shaped
bubble [3].
Our interest in using the Chebyshev super spectral viscosity method is to see if a realistic

bubble shape can be realized while using coarser grids than second-order �nite-di�erence
methods required. Also, it is of interest to see if the spectral method can reveal any small
scale structures in the �ow that the �nite-di�erence methods could not. Since the formation
of a bubble in �uidized beds has been shown to correspond mathematically to the formation
of a shock [10], the standard Chebyshev collocation method will not converge to the entropy
solution [11]. Thus, the addition of spectral viscosity will be necessary. This work focuses on
extending the Chebyshev super spectral viscosity (SSV) method that was successfully used
on a one-dimensional �uidized-bed model [7] to a two-dimensional �uidized-bed model.
This paper is organized as follows: In Section 2, the Chebyshev collocation method and

Chebyshev super spectral viscosity methods are reviewed. Section 3 describes the �uidized-bed
model and numerical results are presented in Section 4.

2. CHEBYSHEV SUPER SPECTRAL VISCOSITY METHOD

The standard collocation points for a Chebyshev collocation (Pseudospectral) method are
usually de�ned by

xj= − cos
(
�j
N

)
; j=0; 1; : : : ; N (3)
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These points are extrema of the N th-order Chebyshev polynomial,

Tk(x)= cos(k arccos(x)) (4)

The points are often labelled the Chebyshev–Gauss–Lobatto (CGL) points, a name which
alludes to the role of the points in certain quadrature formulas. The CGL points cluster
quadratically around the endpoints and are less densely distributed in the interior of the
domain.
The Chebyshev collocation method is based on assuming that an unknown PDE solution,

u, can be represented by a global, interpolating, Chebyshev partial sum,

uN (x)=
N∑

n=0
anTn(x) (5)

The discrete Chebyshev coe�cients, an, are de�ned by

an=
2
N
1
cn

N∑
n=0

u(xj)Tn(xj)
cj

where cj=

{
2 when j=0; N

1 otherwise
(6)

Derivatives of u at the collocation points are approximated by the derivative of the inter-
polating polynomial evaluated at the collocation points. The �rst derivative, for example, is
de�ned by

du
dx
=

N∑
n=0

a(1)n Tn(x) (7)

Since a(1)N+1 =0 and a(1)N =0, the non-zero derivative coe�cients can be computed in decreasing
order by the recurrence relation:

cna(1)n = a(1)n+2 + 2(n+ 1)an+1; n=N − 1; : : : ; 1; 0 (8)

The transform pair given by Equations (5) or (7) and (6) can be e�ciently computed
by a fast cosine transform. Equivalently, the interpolating polynomial and its derivatives can
be computed in physical space using matrix multiplication [12]. Special properties of the
Chebyshev basis allow for di�erentiation via parity matrix multiplication [13] (even–odd de-
composition [14]), which can be performed by using slightly more than half as many �oating
point operations as standard matrix multiplication. More detailed information may be found
in the standard references [11, 15–19].
After the spectral evaluation of spatial derivatives, the system of ordinary di�erential

equations

du
dt
=F(u; t)

results, where u is the vector containing the unknown PDE solution at the collocation points.
The system is typically integrated by a second-, third-, or fourth-order explicit Runge–Kutta
method to advance the solution in time.
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A co-ordinate transformation may be necessary either to map a computational interval to
[a; b] from the interval [−1; 1], or to redistribute the collocation points within an interval
for the purpose of giving high resolution to regions of very rapid change. Perhaps the most
popular map used to redistribute the CGL points (3) is the Koslo�=Tal-Ezer map [20]

x= g(�; �)=
arcsin(��)
arcsin(�)

(9)

If the PDE solution contains shocks, the spectral collocation method will not converge to
the correct entropy solution [11]. In this case, a spectrally small viscosity term, as de�ned in
Reference [10], must be added in order to stabilize the approximation and ensure convergence
to the entropy solution. This can be done without sacri�cing spectral accuracy and can be
accomplished in several di�erent ways, with each way being labelled a particular type of
spectral viscosity method. We have used the SSV method of Reference [21], which for a
conservation law in one space dimension, can be stated as

@
@t

uN +
@
@x

f(uN )= �(−1)s+1Q2suN =SSV(s; C; N ) (10)

where the viscosity operator is given by

Q=
√
1− x2

@
@x

(11)

and �=CN 1−2s. The notation SSV(s; C; N ) is used to indicate that the strength of viscosity
term depends on the parameters s, C and N . It was shown in Reference [21] that if the
parameter C is chosen large enough to ensure stability and such that 06C6N 1=2, and if
s is chosen such that s6 ln(N ), that the bounded solutions of (10) will converge to the
correct entropy solution. Except for the ranges mentioned in order to ensure convergence to
the entropy solution, the parameters s and C are problem dependent, depending mainly on
the strength of the shocks involved.
A direct implementation of (10) amounts to adding 2s spatial derivatives to the equation.

This would introduce additional sti�ness which would severely limit the stable time step
and increase the computational work involved by requiring the computation of higher-order
derivatives. Hence, the practical implementation of the SSV method is an important issue. In
order to derive an e�cient implementation of the SSV method, it is necessary to �rst examine
the viscosity operator Q2 applied to the Chebyshev polynomial (4), Tk(x).

Q2Tk(x)=
√
1− x2

@
@x

[√
1− x2

@
@x

Tk(x)
]
=−k2Tk(x) (12)

As a result of applying the viscosity operator to the Chebyshev polynomials, it can be noticed
that the Chebyshev polynomials are the eigenfunctions of the operator Q2 with eigenvalues
k2. Expanding the viscosity term, which is the right side of (10), we notice that

�(−1)s+1Q2suN = − CN
N∑

k=0

(
k
N

)2s
ak(t)Tk(x) (13)
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The SSV method can be solved by time splitting. We describe the implementation for a
simple splitting which is �rst-order accurate in time. However, the implementation extends in
an obvious way to higher-order split schemes, such as Strang [22] splitting, which we use in
the numerical examples. The �rst-order time splitting based on equations

@
@t

uN +
@
@x

f(uN )=0 (14)

and

@
@t

uN = �(−1)s+1Q2suN (15)

The second equation (15), in the split step can be written as

@
@t

[
N∑

k=0
ak(t)Tk(x)

]
= − CN

N∑
k=0

(
k
N

)2s
ak(t)Tk(x)

which can be solved analytically. Over one time step, the analytical solution modi�es the
Chebyshev coe�cients as

ak(t +�t)= ak(t) exp(−CN�t(k=N )2s)

Thus, the exact solution of the SSV split step can be written as the �ltered partial sum

uN (x)=
N∑

k=0
�
(

k
N

)
ak(t)Tk(x) (16)

where

�
(

k
N

)
= exp

(
−�
∣∣∣∣ kN
∣∣∣∣
�
)

(17)

is an exponential �lter of strength � and order � as described in Reference [23]. The
Chebyshev SSV method is equivalent to applying the exponential �lter with �=2s and
�=CN�t. The method and can be implemented with little additional cost. It should be
stressed that while the SSV method is being implemented via the exponential �ltering frame-
work, that it is not a �th-order �lter as it does not meet the requirements set forth in Reference
[23]. The amount of damping of the high modes is signi�cantly less with the SSV method
than with the application of a �th-order exponential �lter. An application of a �th-order ex-
ponential �lter typically takes �= − ln � where � is machine zero (on a 32-bit machine using
double precision �oating point operations, �=2−52 and ln(�)� −36:0437). Figure 1 compares
two exponential �lters of di�erent orders with an application of the �lter with the parame-
ters set as �=0:032 and �=4, which are possible settings that may be used if the �ltering
framework is used to implement the SSV method.
To extend the Chebyshev SSV method to two dimensions we have used Strang’s second-

order splitting [22] to reduce the two-dimensional problem (1) to a sequence of one-dimen-
sional problems. We have also used Strang splitting to separate the contribution of the source
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Figure 1. Exp. �lter (�=6, �=20, dashed) vs SSV (solid).

term. The splitting is as follows:

wt = b(w;  x;  z) (18)

wt + g(w)z =0 (19)

wt =SSV(s; C; N )z (20)

wt + f(w)x =0 (21)

wt =SSV(s; C; N )x (22)

wt + g(w)z =0 (23)

wt =SSV(s; C; N )z (24)

wt = b(w;  x;  z) (25)

Equations (21) and (22) are solved over a full time step while the other 6 equations are
evaluated over a time step of size �t=2. The fractional steps involving the source terms (18)
and (25), may possibly be evaluated in closed form. Otherwise, they may be advanced in time
with an ODE integrator. The SSV split steps (20), (22) and (24) can be evaluated exactly as
in (16). The remaining equations are advanced in time with a second-order ODE integrator.
We have used an explicit second-order Runge–Kutta method in the numerical examples. In
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this formulation of the problem, g(w)z is evaluated 4 times, f(w)x 2 times, the source term
2 times, SSVx is applied once, and SSVz is applied twice, per time step.
From our experience, the spectral viscosity method can also be implemented successfully

in an unsplit, fully two-dimensional formulation, without source term splitting. For a suitably
chosen time step, the results of the di�erent problem formulations did not noticeably vary
in the numerical examples. However, slightly less spectral viscosity was necessary to obtain
a stable approximation with the split formulation than with the unsplit formulation. It is
speculated that the incremental way in which the spectral viscosity is applied in the split
formulation makes this possible.

3. FLUIDIZED BED MODEL

Let �(x; z; t) denote the particle concentration, m(x; z; t)= �u the horizontal momentum,
n(x; z; t)= �v the vertical momentum, u(x; z; t) the horizontal velocity, and v(x; z; t) the vertical
velocity. The variable x describes the variation along the distributor plate at the bottom of
the bed and the variable z describes the vertical direction from the bottom to the top of the
bed. The two-dimensional �uidized bed can be described by a system of conservation laws
with a source term of form (1) as

�t +mx + nz =0 (26)

mt + (mu+ F(�))x + (nu)z = (1− �)−3:5(� z −m) (27)

nt + (mv)x + (nv+ F(�))z =−(1− �)−3:5(� x + n)− � (28)

where F(�) is speci�ed as

F(�)= s2�+
s2�2p

�− �p
+ 2s2�p ln(|�− �p|) (29)

These equations have been non-dimensionalized using vt , the terminal velocity of an isolated
particle as the velocity scale, and v2t =g and vt=g as the length and time scales, respectively,
where g is the acceleration due to gravity [3].
The parameter �0 is the concentration of particles at equilibrium and �p is the packing

concentration which sets an upper limit for � where 0¡�¡1. The parameter �0u denotes
the particle concentration corresponding the critical state dividing linearly stable and unstable
states (the particle concentration at minimum �uidization). The constant s=3:5(1−�0u)2:5(�p−
�0u) is related to the linear stability of the equilibrium solutions which correspond to states of
uniform �uidization. The stream function  (x; z; t) is de�ned by the elliptic equation of form
(2) with the functions p(x; z), q(x; z) and r(x; z) speci�ed as

p(x; z) =−�x

�

(
1 +

3:5�
1− �

)

q(x; z) =−�z

�

(
1 +

3:5�
1− �

)
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Figure 2. 2d �uidized bed.

r(x; z) =
1
�

(
nx −mz +

3:5
1− �

[�xn− �zm]
)

The scale for the stream function is v3t =g.
The computational domain is taken as (x; z)∈ [−xR; xR]× [−zR; zR]. Zero particle momenta

in the directions normal to physical boundaries for particles colliding with a wall are applied
giving u=0 at x= −xR and xR and v=0 at z= − zR. The boundaries for the elliptic equation
at x= ± xR are streamlines with constant  . At the top of the bed, a somewhat arti�cial
boundary is assumed to exist, where the total volumetric �ux is taken to be evenly dispersed.
At the bottom of the bed (see Figure 2), a jet of gas of width 2xb is centrally located at the
point (x=0; z= − zR) with the background �uidizing gas entering outside of the jet being
jM =(1− �0u)3:5. The �ux of gas entering through the jet is j¿jM which is speci�ed through
the variable �0 as j=(1− �0)3:5. The described boundary conditions on  can be written as
 (−xR; z; t)=0,  (xR; z; t)= −2xRjM +2xb(jM − j),  (x; zR; t)= (−jM + xb(jM − j)=xR)(x+ xR)
and

 (x;−zR; t)=




−jM (x + xR) −xR6x6− xb

−j(x + xb)− jM (xR − xb) −xb ¡ x ¡ xb

−jM (x + xR) + 2xb(jM − j) xb6x6xR

4. NUMERICAL RESULTS

The problem is solved in the split formulation described in Section 2. The fractional steps
involving the source term may be evaluated in closed form. By evaluating (18) and (25)
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exactly, m and n can be updated as

m= � z(1− E) +mE (30)

and

n= �(1− �)
3:5
[1 + (1− �)

3:5
 x](E − 1) + En (31)

where

E= exp
[ −�t
2(1− �)3:5

]
(32)

Since the solution of the equation for the stream may be needed thousands of times during
a numerical run, we have not implemented a spectral solution of the elliptic equation. For
e�ciency we have used a �nite-di�erence method. The solution of the elliptic equation for
the stream function is based on �tting a parabola to the data at points, xi−1, xi and xi+1 and
then computing the �rst and second derivatives at xi. On a uniform grid, the approximation
reduces to the standard second-order central di�erences approximation. The resulting system
of algebraic equations is solved by Gauss–Seidel iteration. The streamfunction  appears in
terms of its �rst partial derivatives only in Equations (18) and (25). Therefore, Equation (2)
is solved initially and then immediately before and after solving Equation (25) at each time
step. The derivatives of  required in Equations (18) and (25) are found by �tting a parabola
to the data at the points xi−1, xi and xi+1, and then computing the �rst derivative at xi. The
approximation is second-order accurate on any grid.
A �uidized bed of height and width 3 (zR= xR=1:5) units is considered. The initial con-

centration of particles is taken as �= �0u = 0:57 and the initial velocities are u= v=0. At
time t¿0, a centered jet of gas with a total width of 0.2 units (xb=0:1), enters from the
bottom of the bed.

4.1. Choice of collocation grid

In the �rst numerical experiment, the gas in�ow is speci�ed by setting �0 = 0:35. A 64 by
64 grid is used and the distribution of collocation points is speci�ed three di�erent ways.
Three di�erent solutions are obtained, each with a di�erent computational grid. The contours
(�=0–0.6) and centre line (x=0) plots are compared at time t=3:0. The goal is to determine
which grid best resolves the solution.
The �rst run uses the CGL grid (3) which clusters points densely around the boundaries

and provides poor interior resolution. In order to obtain stable results with the explicit time
stepping, it was necessary to take �t=0:000025 and take the SSV parameters as C=6 and
s=2. The small time step is typical due to the O(N−2) stable time step restriction imposed
by the CGL grid. The lack of resolution towards the interior of the domain is apparent from
the wide spread contour lines and the centre line plot (Figure 3, top row).
To relax the O(N−2) time stepping restriction, a mapped grid speci�ed by map (9) can be

used. By taking the map parameter to be �=0:86 in both the x and z directions we end up
with a grid with less clustering around the boundaries and with better interior resolution. This
setting of the map parameter is theoretically the upper limit of the parameter range that can be
used with N =64 in order to maintain a spectral convergence rate [20]. Taking �t=0:0001,
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Figure 3. t=3:0, top: CGL grid, middle: �=0:86, bottom: �=0:9999.

and C=3 and s=2, as the SSV parameters, produces stable results. A marked improvement
in results can be observed (Figure 3, middle row) when compared with the CGL grid results.
Increasing the mapping parameter closer to one produces even better results.
The third run again uses map (9) to specify the grid. The map parameter was chosen as

�=0:9999 in both the x and z directions. Choosing the map parameter so close to one results
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in a near uniform grid. Taking �t=0:0005, and C=3 and s=2 as the SSV parameters
produces stable results. Even though taking � so large could introduce a mapping error and
theoretically sacri�ce the spectral convergence rate of the method, this is not an issue in this
case as we are implementing a mixed spectral=�nite-di�erence method in which the overall
accuracy of the solution will not be spectral. The increased resolution in the interior provided
by the near uniform grid is evident (Figure 3, bottom row) in the tightly grouped contour
lines. It is concluded that this is the grid that best resolves the problem. The grid allows
for the largest stable explicit time step and values of the SSV parameters which result in
the smallest amount of spectral viscosity being applied. Compared with the CGL grid results
from the �rst run, the third run used a time step 20 times larger and a spectral viscosity that
was only half as strong.

4.2. Grid size

Map (9) is used to form the grid with �m=0:9999 in both the x and z directions. The map
produces a near uniform grid and allows for good resolution in the centre of the domain as
well as permitting a relatively large stable time step to be taken. The parameter �0 is set
to �0 = 0:2 which corresponds to a strong gas in�ow. The �ow is stronger than that which
is required to maintain a state of minimum �uidization and slugging in the bed is expected.
In the left column of Figure 4, contour plots show � ranging from 0.05 to 0.4 in 0.05
unit increments from time t=2:0 to 4.0 in one unit increments. The set-up for this problem
is similar to experiments run in Reference [3] where the numerical solution was by Roe’s
method which required a 100 by 100 grid to resolve the �ow. The spectral method resolves
the �ow well on this very coarse grid and a physically correct bubble shape is obtained. The
simulation exhibits features observed in �uidized beds, such as coalescence, when a smaller
bubble catches up to and is absorbed by the main bubble. The SSV parameters in both the
x and z directions were s=2 and C=1, which applies only a very weak high pass �lter to
the spectral solution.
The fact that the �ow is well resolved on the 32 by 32 grid indicates that the second-order

�nite-di�erence approximation of the stream function is adequate. It seems as if the accuracy
in which the �ux derivatives are evaluated in the system of conservation laws is the most
important factor in obtaining a resolved solution. The 32 by 32 spectral solution produced
solutions of similar quality as the �nite-di�erence solutions in Reference [3], but at a fraction
of the computational e�ort, and used signi�cantly less storage space. In Figure 5, counter-
rotating convective rolls behind the main bubble are very evident in the velocity �eld of the
coarse grid SSV solution.
The same experiment that was run on the 32 by 32 grid is repeated on a 64 by 64 grid. The

results (the right column of Figure 4) on the �ner grid are similar to the results obtained on
the coarse grid, but some small-scale details in the �ow were revealed that were not present
in the coarse grid spectral solution or in the �nite-di�erence solutions in Reference [3]. The
SSV parameters in both the x and z directions were s=2 and C=3. In the simulation, a small
disturbance below the main bubble appears and eventually coalesces with the main bubble. At
time t=3:0 (Figure 4, centre right), the formation of two small satellite bubbles is noticeable.
By time t=4:0 (Figure 4, bottom right) the main bubble has shed the two satellite bubbles.
Figure 6 shows the t=4:0, �=0:4 contour from Figure 4 with the streamlines corresponding
to the total volumetric �ux superimposed.
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Figure 4. 32 by 32 (left), 64 by 64 (right); t=2:0 (top), t=3:0, t=4:0.

The next result shows that we are approaching a grid-independent solution on a 64 by
64 grid. When going from a resolution of 32 by 32 to a resolution of 64 by 64 there is
a di�erence in both the shape and location of the bubble. Runs with grid densities greater
than 64 by 64 produced bubbles with nearly the identical shape and location as the 64 by
64 runs. Additionally, no new �ne scale details, such as satellite bubbles appeared at �ner
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Figure 5. 32 by 32 grid velocity �eld, t=4:0.
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Figure 6. �=0:4 bubble contour with streamlines.

resolutions. Figure 7 compares the centre line (x=0) plots of the 32 by 32 (dotted) and 64
by 64 (dashed) concentration solutions from Figure 4 at time t=3:0. The solid line in Figure
7 is from a 96 by 96 grid calculation which used a grid mapping parameter of �m=0:9999
and SSV parameters of s=2 and C=5. Except for the chaotic region near the jet at the
bottom of the bed, the 64 by 64 and 96 by 96 runs agree very well.
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Figure 7. t=3:0, N =96 solid, N =64 dashed, N =32 dotted.

5. CONCLUSIONS

A mixed Chebyshev SSV=�nite-di�erence method has been implemented for the �uidized-
bed model. The �ux derivatives in the conservation laws are evaluated by a Chebyshev
pseudospectral method while the elliptic equation for the stream function is solved by a
second-order �nite-di�erence method. The approximation is second-order accurate in time.
The SSV method has been shown to produce quality numerical solutions of a complicated
multiphase �ow problem. The method was able to use fewer degrees of freedom and still
resolve �ne scale features in the solution better than in previous reported results in Reference
[3] using Roe’s method with a Superbee �ux limiter. A grid which was nearly uniform best
resolved the problem, allowed the smallest amount of spectral viscosity to be applied, and
allowed the largest stable time step to be used.
Although the development of bubbles in �uidized beds has been shown to mathemati-

cally correspond to the development of shocks, spurious oscillations are not visibly ev-
ident in the numerical solution. This is in contrast to the Chebyshev SSV solution of a
one-dimensional �uidized-bed model in Reference [7] where a post-processing method was
used to remove the e�ects of the Gibbs phenomenon from the approximation. The shocks
seem much weaker in the two-dimensional model and the mild �ltering of the SSV meth-
ods seems to keep any spurious oscillations under control. If an oscillatory solution was
obtained, methods for post-processing two-dimensional functions [24, 25] are available. How-
ever, theoretically, the results of their application to the two-dimensional �uidized-bed solution
would be less certain due to the second-order �nite-di�erence solution of the equation for the
stream.
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Our future work will consider axisymmetric geometry, and multiple, interacting bubbles.
Additionally, higher-order methods for the solution of the stream equation will be explored
with the goal of obtaining a solution that has overall spectral accuracy in space.
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